
International Journal of Geology, Agriculture and Environmental Sciences 
Volume – 5 Issue – 5 October 2017  
Website: www.woarjournals.org/IJGAES                                                                           ISSN: 2348-0254 

 

 

WOAR Journals Page 5 
 

Quantitative structure activity relationship studies on 

some N-benzylacetamide and 3-

(phenylamino)propanamide derivatives with 

anticonvulsant properties 
  

Adedirin Oluwaseye
1
, Adamu Uzairu

2
, Shallangwa Gideon Adamu

3
, Abechi Stephen Eyije

4
 

 
1Chemistry Advance Research Center, Sheda Science and Technology Complex, 

 Abuja, Nigeria,   

 
2,3, 4Chemistry Department, Ahmadu Bello University, Zaria, Nigeria.  

 

Abstract: The activity of a number of N-benzylacetamide and 3-(phenylamino)propanamide analogues with anticonvulsant properties 

was described using the quantitative structure activity relationship model by applying it to 80 compounds. The molecular descriptors of 

the compounds were obtained by quantum chemical calculations combined with molecular modeling calculations. The resulting model 

has correlation coefficient R of 0.92 meaning it explains up to 92% of the variance in the activity of the compounds that made up the 

data set. The model was successfully validated internally by leave one out cross validation and y-scrambling test. External validation was 

done using the Golbraikh and Tropsha criteria and predicted square correlation coefficient for the test set R2pred. Statistical analysis 

shows that the anticonvulsant activity of the studied compounds depends mainly on the Kier2, RDF50s, AATS4i and VE2_D descriptors. 
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1. Introduction 

Epilepsy is one of the most common and serious neurological 

disorder and it is characterized by recurrent aberrant 

synchronized discharge of a neuronal population termed 

‘seizures’[1] which results from a temporary electrical 

disturbance of the brain due to an imbalance between 

excitatory and inhibitory neurotransmitters [2]. Seizures result 

from phasic changes in the firing properties of groups of 

neurons, usually within a descrete focal point, to an intermittent 

high-frequency burst-firing mode resulting in synchronized 

disruptive ‘electrical’ discharges owing to changes in neuronal 

excitability [1]. Epilepsy is affecting about 50 million 

individuals worldwide of which about 10.5 million are children 

[3] and almost 90% of these people are in the developing 

countries [4]. Untreated epilepsy can lead to impaired 

intellectual function or death and it is usually accompanied 

with psychosocial prejudices and other psycho pathological 

consequences such as loss of self-esteem and poor quality of 

life [5]. 

Treatment of epilepsy with chemical agent i.e. 

pharmacotherapy is one of major approach of treatment for 

epilepsy and since the introduction of Phenobarbital as an 

effective anticonvulsant agent a number of antiepileptic drugs 

(AEDs) have been introduced into the market. The first 

generation AEDs are Phenytoin, carbamazepine, valproate, 

Phenobarbital, primidone, ethosuximide and benzo-diazepines. 

These are capable of preventing seizure generation irrespective 

of the underlying etiology [6]. Increase in the understanding of 

the biological causes of epilepsy over the last 30 years have 

allowed the development of the second generation AEDs 

including oxcarbazepin, Gabapentin, lamotrigine, felbamate, 

Tiagabin, Vigabatrin, Topiramate, Levetiracetam, and  

 

 

Zonisamide. These second generation of AEDS targets the 

cellular mechanism that is responsible for epileptic discharges 

[6]. Despite the development these AEDs over 30% of people 

with epilepsy do not have seizure control and others do so only 

at the expense of significant dose related toxicity and peculiar 

adverse effects that range in harshness from minimal brain 

impairment and megaloblastic anemia to death from aplastic 

anemia or hepatic failure [7].These limitations demand the 

need for the development of more effective and safer 

antiepileptic drugs. 

The first step for the discovery and development of new 

molecular candidates with improved anticonvulsant activity and 

no/lesser neurotoxicity should be concerned with the 

application of methodologies and techniques that will take care 

of the time factor, reduce high cost of experimental runs and 

prevents the serendipitous synthesis in organic chemistry [8]. In 

this sense, computer-aided drug design methodologies have 

played an essential role for the discovery of compounds in 

medicinal chemistry [9,10], pharmaceutical design [11] and 

drug metabolism [12]. They have helped to improve the 

process of optimization of the molecular structure with defined 

purposes [13]. One of such techniques is quantitative-structure 

activity relationship (QSAR) analysis which have proved to be 

useful tool for predicting  biological activities of compounds by 

utilizing experimental data and molecular structure [14]. 

Quantitative structure-activity relationship (QSAR) analysis is 

an area of computational research which builds models of 

biological activity using physicochemical properties of a series 

of compounds. The underlying assumption is that the variations 

of biological activity within a series of similar structures can be 

correlated with changes in measured or computed molecular 

features (molecular descriptors) of the molecules. These 
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molecular descriptors could measure, for example, 

hydrophobic, steric, and electronic properties which may 

influence biological activity. The pre-requisite of developing 

QSAR equations is the availability of a wide range of 

molecular structures and their complementary activities and the 

field of AED research is very dynamic with numerous 

compounds of varying chemical classes reported to posses’ 

anticonvulsant activity. One of such class of compounds is the 

carboxamides, which include N-benzylacetamides and 3-

(phenylamino)propanamides. Reported here is the QSAR study 

on some new N-benzylacetamides and 3-

(phenylamino)propanamides derivitatives which show 

anticonvulsant activity and relatively low neurotoxicity value 

compare to reference drug molecule using Genetic function 

approximation algorithm as the modeling tool. The best model 

obtained from the study was then used to design in silico new 

compounds with improved anticonvulsant activity values.  

 

2. Materials and methods 

 

1.1. Dataset 

 

80 derivatives of N-benzylacetamide and 3-

(phenylamino)propanamide were chosen from literatures 

[15,16] which are concerned only with the synthesis of the 

derivatives and their pharmacological test using similar assay 

(Maximum electroshock seizure test (MES) on albino mice). 

The anticonvulsant activity data were expressed as ED50 

(mg/kg) and recalculated to molar unit for easy comparison 

between molecules [17], thereafter their Logarithmic values (-

log ED50) was calculated thus correlating the data linear to the 

free energy change [18] and presented in Table 1 with the 

structure of each molecules as the observed anticonvulsant 

activity for each molecule. ED50 is defined as a measure of the 

dose quantity that is effective in 50% of the tested animals and 

TD50 is a measure of the dose quantity that presents toxicity in 

50% of the tested animals. 

 

 

1.2. Calculation of molecular descriptors 

 

In order to identify the effect of the molecular structure on the 

anticonvulsant activity of selected compounds, molecular 

descriptors which map the structure of compounds into a set of 

numerical values representing various molecular properties 

were calculated because only these numerical properties can 

correlate more directly with the activity [19]. The process 

started by constructing the 2D structure of each molecule and 

subsequent conversion to 3D using sketch and view tools in 

Spartan 14 package [20]. Molecular mechanics and PM3 

quantum chemical procedure were used for optimization and 

energy minimization of the molecules until the root mean 

square (RMS) gradient value was smaller than 10
-6

 a.u. 

Furthermore, in order to obtain reliable energetic and accurate 

data on electronic properties of molecules the single-point 

energy calculations were performed at the DFT/B3LYP level 

of theory using the 6-31G** basis set. Some electronic 

descriptors were obtained from Spartan 14 and the optimized 

molecules were imported into PaDEL-descriptor [21] software 

for the calculation of other molecular descriptors.  

The total number of calculated descriptors was 1865. 

Among the calculated descriptors those for which no value was 

available for all the compounds were disregarded. Also, 

descriptors of which the value is constant (or near-constant) 

were excluded. The remaining descriptors were scaled by 

standardization (auto-scaling) using the equation below: 

 

  

 

Where ‘ ’is the scaled descriptor, ‘ ’ is the mean for each 

column of descriptors ‘x’ and  is the standard deviation of 

each column of descriptor. This gives all the variables in the 

data set equal importance in the model, thus removing the 

dependence of the regression coefficient on unit of the 

descriptors [22]. 

 

1.3. Data division 

 

Euclidean distance based clustering method available in 

Datadivision 1.2 software [23] was used to divide the data into 

training (modeling) set and test (evaluation) set which 

constitute about 30 percent of the entire data [24]. The training 

set are used to construct the model and the test set (data set that 

are not included in constructing the model but cover the whole 

range of the training set) are used to check the ability of the 

model to predict external data set [25]. The data division 

method considers variability in both x and y dimensions to split 

the data into training set and test set. It start by calculating the 

Euclidean distance EDx in the independent variable X-space 

and EDy in the dependent variable y-space separately for each 

pair (p,q) of samples in the data set. The EDx(p,q) and 

EDy(p,q) are divided by their maximum values in the data set in 

order to assign an equal importance to the distributions of 

samples in the x and y spaces. The results are then added 

together to give a normalized x-y distance EDXY(p,q). Then, 

the selection start by taking the pair for which the EDXY(p,q) 

distance is largest and with subsequent iteration, the algorithm 

selects a sample that exhibits the least distance with respect to 

any sample already selected. The procedure is repeated until 

the number of sample required is achieved, thus resulting in 

two sets of sample from the original data set where one is 

reported as the training set and the other as the test set [26]. 

Consequently the initial data set in this work was splitted into 

two subsets: a training subset (Ntrain = 50) and a external 

validation subset (Ntest = 30).  

 

1.4. Selection and mapping of descriptor to Activity 

 

Selection of important descriptors that best explain the 

anticonvulsant activity of the selected compounds in this work 

was done from training (modeling) set only [27] using  Genetic 

function approximation (GFA) method [28] available in 

Material studio 7.0 software. GFA is a combination of 

Holland's Genetic Algorithm (GA) and Friedman's multivariate 

adaptive regression splines (MARS) algorithm. It uses a 

genetic algorithm to perform a search over the space of 

possible QSAR models and uses certain fitness function (LOF) 

score obtained via multivariate adaptive regression splines 

algorithm to estimate the fitness of each model. The GFA 

algorithm approach has a number of important advantages over 

other techniques: it builds multiple models rather than a single 

model; it automatically selects which features are to be used in 

its basis functions and determines the appropriate number of 
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Table 1: Selected N-benzylacetamide and 3-(phenylamino)propanamide derivatives molecular structure, anticonvulsant and neurotoxicity values 

S/N Molecular structure pED50 pTD50 S/

N 

Molecular structure pED50 pTD50 

1 

 
(R)-2-amino-3-methyl-N-phenethylbutanamide 

4.343 

 

3.644 5 

(R)-2-amino-3methyl-N-(4-

trifluoromethoxy)benzyl) butanamide 

4.271a 3.539b 

2 

 
(R)-2-amino-3methyl-N-(3-

phenylpropyl)butanamide 

4.166a 3.736 6 

(R)-2-amino-N-(2-fluorophenethyl)-3-methyl 

butanamide 

3.846 3.480 

3 

 
(R)-2-amino-3methyl-N-(4-

phenylbutyl)butanamide 

4.354 3.815 7 

(R)-2-amino-N-(3-fluorophenethyl)-3-methyl 

butanamide 

3.946a 3.551b 

4 

 
(R)-2-amino-3methyl-N-(2-trifluoromethoxy) 

benzyl)butanamide 

4.499 3.755 8 

(R)-2-amino-N-(4-fluorobenzyl)-3-methyl 

butanamide 

4.029 3.360 

‘a’ represent the anticonvulsant activity values for data used as test set for anticonvulsant models, ‘b’ represent the neurotoxicity values for data used as test set for 

neurotoxicity models, pED50 represent negative logarithm value of the dose quantity that is effective in 50% of the tested animals and pTD50 represent negative 

logarithm value of the dose quantity that present toxicity in 50% of the tested animals 

 

Table 1continued: Selected N-benzylacetamide and 3-(phenylamino)propanamide derivatives molecular structure, anticonvulsant and neurotoxicity values 

S/N Molecular structure pED50 pTD50 S/N Molecular structure pED50 pTD50 

9 

 
2-amino-N-benzylbutanamide 

4.115 3.469b 13 

(R)-2-amino-N-benzylpentanamide 

3.383 3.619b 

10 

 

N-benzyl-2-methylbutanamide 

4.076a 3.064b 14 

 

2-amino-N-benzyl-2-phenylacetamide 

4.138a 3.593 

11 

 

2-amino-N-benzyl-3-methylbutanamide 

3.534a 3.469 15 

 

2-amino-N-benzyl-2-(pyridin-2-yl)acetamide 

3.624 3.127b 

12 

 
N-benzyl-3-ethoxyl-2-methylpropanamide 

3.992 3.453 16 

 

2-amino-N-benzyl-2-(pyridin-4-yl)acetamide 

3.903a 3.127b 

‘a’ represent the anticonvulsant activity values for data used as test set for anticonvulsant models, ‘b’ represent the neurotoxicity values for data used as  test set for 

neurotoxicity models, pED50 represent negative logarithm value of the dose quantity that is effective in 50% of the tested animals and pTD50 represent negative 

logarithm value of the dose quantity that present toxicity in 50% of the tested animals 

 

 

http://www.woarjournals.org/IJGAES


WOAR Journals Page 8 

 

 

Table 1 continued: Selected N-benzylacetamide and 3-(phenylamino)propanamide derivatives molecular structure, anticonvulsant and neurotoxicity values 

S/N Molecular structure pED50 pTD50 S/N Molecular structure pED50 pTD50 

17 

 

2-amino-N-benzyl-2-(pyridin-4-yl)acetamide 

3.852 3.180 21 

2

-amino-N-benzyl-2-(5-methylfuran-

2yl)acetamide 

3.259 3.351b 

18 

 

2-amino-N-benzyl-2-(pyrazin-2-yl)acetamide 

3.493 3.692 22 

2-amino-N-benzyl-2-(quinolin-2-

yl)acetamide 

3.567 3.493 

19 

 

2-amino-N-benzyl-2-(naphtalen-1-

yl)acetamide 

3.060a 3.692 23 

2-amino-N-benzyl-2-(4-

fluorophenyl)acetamide 

3.774 3.497b 

20 

 

2-amino-N-benzyl-2-(naphtalen-2-

yl)acetamide 

3.455a 3.351 24 

2-amino-N-benzyl-2-(p-toly)acetamide 

3.810a 3.001 

‘a’ represent the anticonvulsant activity values for data used as test set for anticonvulsant models, ‘b’ represent the neurotoxicity values for data used as  test set for 

neurotoxicity models, pED50 represent negative logarithm value of the dose quantity that is effective in 50% of the tested animals and pTD50 represent negative 

logarithm value of the dose quantity that present toxicity in 50% of the tested animals 

 

 

Table 1 continued: Selected N-benzylacetamide and 3-(phenylamino)propanamide derivatives molecular structure, anticonvulsant and neurotoxicity values 

S/N Molecular structure pED50 pTD50 S/

N 

Molecular structure pED50 pTD50 

25 

 

2-amino-N-benzyl-2-(4-methoxypheny)acetamide 

4.036 3.183 29 

 
2-amino-N-(2,6-dimethylphenyl) actamide 

4.168 3.001 

26 

 

2-amino-N-benzyl-2-(furan-2yl)acetamide 

3.242a 3.756b 30 

 N-(2,6-dimethylphenyl) 

cyclobutanecarboxamide 

3.680 3.548 

27 

 

2-amino-N-benzyl-2-(thiophen-2yl)acetamide 

4.411 3.247 31 

 

(R)-2-acetamido-N-benzyl-2-phenylacetamide 

3.944 3.577b 

28 

 

2-amino-N-benzyl-2-(thiazol-2yl)acetamide 

4.278 3.337b 32 

 

2-acetamido-N-benzyl-2-(pyridine-2-yl) 

acetamide 

3.603 3.690b 

‘a’ represent the anticonvulsant activity values for data used as test set for anticonvulsant models, ‘b’ represent the neurotoxicity values for data used as  test set for 

neurotoxicity models, pED50 represent negative logarithm value of the dose quantity that is effective in 50% of the tested animals and pTD50 represent negative 

logarithm value of the dose quantity that present toxicity in 50% of the tested animals 
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Table 1 continued: Selected N-benzylacetamide and 3-(phenylamino)propanamide derivatives molecular structure and activity values 

S/N Molecular structure pED50 pTD50 S/N Molecular structure pED50 pTD50 

33 

 

2-acetamido-N-benzyl-2-(pyrazine-2-yl) 

acetamide 

3.256a 3.495 37 

2-amino-N-benzyl-2-cyclohexylacetamide 

3.433a 3.191 

34 

 

(R)-2-amino-N-benzylhexanamide 

3.996 3.495 38 

2-amino-N-benzyl-3phenylpropanamide 

3.559a 3.367b 

35 

 

(R)-2-amino-N-benzyl-3,3-dimethylbutanamide 

3.793 3.495b 39 

2-acetamido-N-benzylpropanamide 

3.764a 3.472b 

36 

 

2-amino-N-benzyl-3-methylpentanamide 

3.439 3.694 40 

N-(1-(3-chlorophenyl)ethyl)cyclopentane 

carboxamide 

3.981a 3.534b 

‘a’ represent the anticonvulsant activity values for data used as test set for anticonvulsant models, ‘b’ represent the neurotoxicity values for data used as  test set for 

neurotoxicity models, pED50 represent negative logarithm value of the dose quantity that is effective in 50% of the tested animals and pTD50 represent negative 

logarithm value of the dose quantity that present toxicity in 50% of the tested animals 

 

Table 1 continued: Selected N-benzylacetamide and 3-(phenylamino)propanamide derivatives molecular structure, anticonvulsant and neurotoxicity values 

S/N Molecular structure pED50 pTD50 S/N Molecular structure pED50 pTD50 

41 

 

2-acetamido-N-benzylpentanamide 

3.743 3.343 45 

N-benzyl-2-(methylamino)-2-

phenylacetamide 

3.815a 3.571 

42 

 

2-amino-N-benzylpropanamide 

3.803a 3.288 46 

N-benzyl-2-(dimethylamino)-2-

phenylacetamide 

4.140 3.482 

43 

 

N-benzyl-2-(methylamino)propanamide 

3.866 3.110b 47 

2-acetamido-N-benzylpent-4-enamide 

4.039 3.744 

44 

 

N-benzyl-2-(dimethylamino)propanamide 

3.462a 3.571 48 

(R)-2-amino-2-methoxy-N-(4-

(trifluoromethyl) benzyl)acetamide 

4.292 3.512 

‘a’ represent the anticonvulsant activity values for data used as test set for anticonvulsant models, ‘b’ represent the neurotoxicity values for data used as  test set for 

neurotoxicity models, pED50 represent negative logarithm value of the dose quantity that is effective in 50% of the tested animals and pTD50 represent negative 

logarithm value of the dose quantity that present toxicity in 50% of the tested animals 
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Table 1 continued: Selected N-benzylacetamide and 3-(phenylamino)propanamide derivatives molecular structure, anticonvulsant and neurotoxicity values 

S/N Molecular structure pED50 pTD50 S/N Molecular structure pED50 pTD5

0 

49 

 
(R)-2-amino-N-(4-chlorobenzyl)-3-

methylbutanamide 

4.080 3.682 53 

(

R)-2-amino-3,3-dimethyl-N-(4-

(trifluoromethoxy) benzyl)butanamide 

4.346 3.75

8b 

50 

 
(R)-2-amino-3methyl-N-(4-trifluoromethyl)benzyl) 

butanamide 

3.872a 3.482 54 

(R)-2-amino-N-(4-((3 

fluorobenzyl)oxy)benzyl)-3-

methoxypropanamide 

4.460 4.15

8b 

51 

 
(R)-2-amino-N-(4-chlorobenzyl)-3,3-dimethyl 

butanamide 

4.036 3.336b 55 

2-acetamido-N-(4-((3-

fluorobenzyl)oxy)benzyl)-3-

methoxypropanamide 

4.804 4.57

3 

52 

 
(R)-2-amino-3,3-dimethyl-N-(4-(trifluoromethyl) 

benzyl)butanamide 

4.008a 3.620b 56 

2-acetamido-N-(4-((3-fluorophenoxy) 

methyl)benzyl)-3-methoxypropanamide 

4.572a 3.85

9b 

‘a’ represent the anticonvulsant activity values for data used as test set for anticonvulsant models, ‘b’ represent the neurotoxicity values for data used as  test set for 

neurotoxicity models, pED50 represent negative logarithm value of the dose quantity that is effective in 50% of the tested animals and pTD50 represent negative 

logarithm value of the dose quantity that present toxicity in 50% of the tested animals 

 

 

Table 1 continued: Selected N-benzylacetamide and 3-(phenylamino)propanamide derivatives molecular structure, anticonvulsant and neurotoxicity values 

S/N Molecular structure pED50 pTD50 S/N Molecular structure pED50 pTD50 

57 

 

2-amino-N-(4-((3-

fluorophenoxy)methyl)benzyl)-3-

methoxypropanamide 

3.533 3.064 61 

2-amino-N-(2,6-dimethylphenyl) hexanamide 

4.606 3.643 

58 

 
N-benzyl-2-methylbutanamide 

4.440a 3.497 62 

3-(m-tolylamino)propanamide 

4.421 3.986 

59 

 
2-amino-N-(4-((3-

fluorophenoxy)methyl)benzyl)-3-

methylbutanamide 

4.542 3.009b 63 

3-(3-methoxyphenylamino) propanamide 

4.275 3.590 

60 

 
3-(2-chlorophenylamino)propanamide 

4.333a 3.809b 64 

 
3-(phenylamino)propanamide 

4.093a 3.701
b 

‘a’ represent the anticonvulsant activity values for data used as test set for anticonvulsant models, ‘b’ represent the neurotoxicity values for data used as  test set for 

neurotoxicity models, pED50 represent negative logarithm value of the dose quantity that is effective in 50% of the tested animals and pTD50 represent negative 

logarithm value of the dose quantity that present toxicity in 50% of the tested animals 
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Table 1 continued: Selected N-benzylacetamide and 3-(phenylamino)propanamide derivatives molecular structure, anticonvulsant and neurotoxicity values 

S/N Molecular structure pED50 pTD50 S/N Molecular structure pED50 pTD50 

65 

 
N-benzyl-3-((2-

methoxyphenyl)amino)propanamide 

4.083a 3.391b 69 

N-(1-phenylpentyl)piperidine-2-

carboxamide 

4.096 3.367 

66 

 
3-(p-tolylamino)propanamide 

4.034 3.667 70 

(R)-2-acetamido-N-benzyl-3-isopropoxy 

propanamide 

4.085 3.594 

67 

 
(R)-2-acetamido-N-benzyl-3-(prop-2-yn-1-

oxy) propanamide 

4.234 3.596 71 

N-benzyl-3-((3-methoxyphenyl)amino) 

propanamide 

3.756 2.856 

68 

 
N-(2-methyl-1-phenylpropyl) piperidine-2-

carboxamide 

4.073 3.632b 72 

N-((R)-1-(3-

methoxylphenyl)ethyl)piperidin-2-

carboxamide 

3.630a 3.157 

‘a’ represent the anticonvulsant activity values for data used as test set for anticonvulsant models, ‘b’ represent the neurotoxicity values for data used as  test set for 

neurotoxicity models, pED50 represent negative logarithm value of the dose quantity that is effective in 50% of the tested animals and pTD50 represent negative 

logarithm value of the dose quantity that present toxicity in 50% of the tested animals 

 

Table 1 continued: Selected N-benzylacetamide and 3-(phenylamino)propanamide derivatives molecular structure, anticonvulsant and neurotoxicity values 

S/N Molecular structure pED50 pTD50 S/N Molecular structure pED50 pTD50 

73 

 
N-(2,6-dimethylphenyl)cyclopent-3-

enecarboxamide 

3.593 3.013b 77 

 

N-(1-(3-chlorophenyl)ethyl)cyclohexane 

carboxamide 

3.169 3.127 

74 

 
N-(2,6dimethylphenyl) 

cyclopentanecarboxamide 

3.545a 3.744 78 

 

2-acetamido-N-benzyl-3-(2-

cyclopropylethoxy) propanamide 

3.821 3.554 

75 

 
2-acetamido-N-benzyl-3-

(benzyloxy)propanamide 

3.708 3.213b 79 

N-(4-(trifluoromethyl)benzyl)piperidin-2-

carboxamide 

3.834a 3.336 

76 

 

N-(1-phenylethyl)cyclohexanecarboxamide 

3.483a 3.003 80 

 

(R)-1-amino-N-(1-

phenylethyl)cyclopentane carboxamide 

3.733 3.266 

‘a’ represent the anticonvulsant activity values for data used as test set for anticonvulsant models, ‘b’ represent the neurotoxicity values for data used as  test set for 

neurotoxicity models, pED50 represent negative logarithm value of the dose quantity that is effective in 50% of the tested animals and pTD50 represent negative 

logarithm value of the dose quantity that present toxicity in 50% of the tested animals 

 

basis functions to be used by testing full-size models rather 

than incrementally building them; it is better at discovering 

combinations of basis functions that take advantage of 

correlations between features; it incorporates the LOF (lack of  

 

fit) error measure developed by Friedman that resists 

overfitting and allows user control over the smoothness of fit; it 

can use a larger variety of basis functions in construction of its 

models, for example, splines, Gaussians, or higher-order 
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polynomials; and study of the evolving models provides 

additional information, not available from standard regression 

analysis, such as the preferred model length and useful 

partitions of the data set [28]. 

In brief, GFA starts by generating an initial “m” population 

of equation by random choice of molecular descriptors. These 

equations form the parent generation and in each generation, 

the fitness of every individual descriptor in the population is 

evaluated. Roulette wheel parent selection rule is applied where 

( ) pairs of parents are chosen randomly from the current “m” 

population to form a new population of “children equation” by 

recombination (crossover) and possibly mutation of 

descriptors. Fitness of each children equation is evaluated and 

the more fit children equations are used to replace the parent 

equation for the next iteration step in the algorithm. The 

process continues and terminate when either a maximum 

number of generations has been produced, or a satisfactory 

fitness level has been reached for the population. In this work 

the equation length was set to range from 5 to 12 terms and a 

constant in order to comply with the generally known semi-

empirical ‘rule of thumb’ and Toplis ratio [29, 30] which say 

the ratio of descriptor to the number of molecule used to 

construct a model should not exceed 1:6. The population size 

was set to 10000, maximum generation was set to 500, number 

of top equation returned was set to 3, mutation probability was 

set to 0.1, and scaled LOF smoothness parameter was set to 

0.5. The selected combinations of descriptors with no or 

minimum co-linearity which are map to the anticonvulsant 

activity producing multiple QSAR models were saved for 

subsequent studies. 

 

1.5. Statistical quality and model validation 

Multiple Linear Regression (MLR) [31] and correlation 

analyses were carried out on each group of descriptor that 

constitute a model using Microsoft excel (version 2007) 

software in order to evaluate the statistical quality of the 

regression equations at statistical significance level of 0.05 (P < 

0.05) and evaluate the extent of multicolinearity between 

descriptors . The evaluated parameters for assessing statistical 

quality includes square correlation coefficient (R
2
), the 

adjusted squared correlation coefficient (R
2

adj) , Standard error 

of estimation (SEE), Predicted error sum of square (PRESS), 

the variance ratio F, the t-statistics and p-values for each 

descriptors. The extent of multi co-linearity between 

descriptors was evaluated with variance inflation factors VIF of 

each descriptor estimated from the correlation matrix among 

the descriptors only (excluding the activity column vector). The 

VIFs are the diagonal element of the inverse matrix obtained 

from the correlation matrix [32].  

The models obtained were validated internally by 

calculations of the leave one out cross-validation squared 

correlation coefficient (R
2

CV = Q
2
) values (33). In addition, the 

robustness of the proposed models were checked by 

permutation testing: parallel models were developed based on a 

fit to randomly reordered Y-data (Y-randomization) [24, 30]. 

According to the basic approach of Wold and Eriksson [33] all 

randomization methods consisted of ten randomization runs for 

any data set size. Externally, the models were validated by 

calculated predictive squared correlation coefficient R
2
pred and 

other criteria for predictive models proposed by Golbraikh and 

Tropsha [34].  All computations were performed on a HP core 

i5-4200U workstation. 

 

1.6. Contribution of selected descriptors 

The importance of each descriptor in the models in relation to 

other descriptor in the same model and each descriptor 

contribution to that model as a whole was estimated using the 

mean effect. Mean effect was calculated from the coefficient of 

each descriptor in a model and their value in the data matrix 

using the relationship below: 

  

Here MFj is the mean effect of a descriptor j in a model, βj 

is the coefficient of the descriptor J in that model and dij is the 

of that descriptor of interest in the data matrix for each 

molecule in the training set, m is the number of descriptor that 

appear in the model and n is the number of molecules in the 

training set [35] 

1.7. Models applicability domain 

Leverage approach that utilizes Williams plot was employed to 

define the applicability domain of the models reported. 

Williams plot for a model is a graphical view of leverage 

values for each molecule in the entire data set versus their 

standardized cross validated residual obtained by the model 

[24]. The leverage (hii) value for each molecule is obtained has 

the diagonal elements of the hat matrix constructed for both 

training set and test set while, standardized cross validated 

residual for each molecule is obtained from the relation below 

estimated for the training and test set: 

 

SDR =      

 

Here ‘y’ is the observe (experimental) activity value for 

either the training or the test set,  is the predicted activity 

value by the models either for the training or test set and n is 

the number of molecules either in the training or test set. The 

hat matrix for the training set was obtained using Microsoft 

excel  through the following consecutive steps. 

i. Add a column vector whose elements are only ‘1s’ to 

the descriptor only data matrix i.e. Xtr (n m) 

ii. Obtain the transpose of matrix Xtr (n m) using the 

TRANSPOSE functions to obtain a new matrix X
T

tr 

(m  n). 

iii. Post-multiply the transpose matrix X
T

tr with matrix Xtr 

(n m) in step1 using the function =MMULT (array1, 

array2) i.e X
T

tr(m  n) Xtr(n m) = A(m m) i.e. 
X

T
trXtr. Note that this multiplication is not 

commutative.  

iv. Obtain the inverse of matrix A (m m) using the 

function =MINVERSE (array1) i.e A
-1

(m m)  

(X
T

trXtr)
-1

. This matrix A
T
 is sometime called ‘the 

clone’ matrix (Mniovski et al, 2007). 

v. Post-multiply the matrx Xtr with ‘the clone’ i.e. A
-

1
(m m) using the function =MMULT(array1,array2) 

= i.e. Xtr(n m)  A
T
(m m) =B(n m) i.e XtrA

-

1
(n m). Note that this multiplication is not 

commutative. 

vi. Finally obtain the hat matrix ‘Htr’ for the training set by 

post multiplication of matrix B(n m) with the 

transpose matrix X
T

tr (m  n) obtain in step2 i.e. 

B(n m)  X
T

tr (m  n) = Htr (n n). 
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Here n is the number of molecule in that make up the 

training set and m is the number of descriptors that appear in a 

model. The hat matrix for the training set can be expressed in 

term of the descriptor matrix(Xtr) only as Xtr(X
T

trXtr)
-1

X
T

tr and 

the diagonal elements of this matrix represent the leverages ‘hii’ 

for the molecules that made up the training set. If Xte is the 

descriptor matrix for molecule in the test set arranged in 

sequence as that of the training set, the hat matrix for test-set 

‘Hte’ was obtained using similar procedure with slight 

medication 

 

i. Add a column vector whose elements are only ‘1s’ to 

the descriptor only data matrix i.e. Xte (z m) 

ii. Obtain the transpose of matrix Xte (z m) using the 

TRANSPOSE functions to obtain a new matrix X
T

te 

(m  z). 

iii. Use the clone matrix obtained for the training set i.e. A
-

1
(m m) (X

T
trXtr)

-1
 to post multiply the matrix Xte 

(n m) i.e Xte (z m) A
-1

(m m) = C(z m). This is an 

attempt to map the test into the domain of the training 

set. 

iv. Finally obtain the hat matrix ‘Hte’ for the test set by 

post multiplication of matrix C(z m) with the 

transpose matrix X
T

te (m  z) obtain in step2 i.e. 

C(z m)  X
T

tr (m  z) = Hte (z z). 

 

Here z is the number of molecule in that make up the 

training set and m is the number of descriptors that appear in a 

model. The hat matrix for the training set can be expressed in 

term of the descriptor matrix(Xte) only as Xte(X
T

trXtr)
-1

X
T

te and 

the diagonal elements of this matrix represent the leverages ‘hii’ 

for the molecules that made up the test set. The leverages 

obtained for both set are plotted as abscissa against the 

standardized cross validated residual which is the ordinate to 

obtain the Williams plot and the cut leverage ‘h*’ on the x-axis 

is obtained using the relation below, while the cut off for the 

standardized cross validated residual on the y-axis has been 

reported to be 2.5  y  3 [36, 37] 

  

Here m is the number of descriptors that appear in a model and 

n is the number of molecule in that make up the training set 

only. 

 

1.8. In silico generation of compounds 

 

QSAR models have always been used as powerful tools for 

virtual screening of compounds with a given biological activity 

[12]. It can also be used as knowledge generators, that is, by 

interpreting the meaning of the molecular descriptors in the 

models, it could be possible to create new molecules that in 

principle would have the given biological activity [39]. 

Combining the knowledge about a reference molecule in the 

data set, knowledge about the relative important of the 

molecular descriptors in the models and structural 

interpretation of the most important molecular descriptors 

employed to create the model, effort was made to use the 

QSAR models reported as a knowledge generators to create 

new hypothetic molecules that in principle would have 

improved anticonvulsant activity and lesser neurotoxicity. 

 

3. Result and discussion 

1.9. Data set 

Single column statistics performed on the training set and test 

set data reported in Table2 show that the maximum of the test 

set for both the anticonvulsant and neurotoxicity is less than the 

maximum and training set. The minimum of test set for 

anticonvulsant activity is also less than the minimum for its 

training set, also, the minimum for neurotoxicity are 

approximately equal for both set. This indicates that the test set 

is interpolative i.e. derived within the minimum – maximum 

range of the training set. The mean and the standard deviation 

of the two data sets provide insight to the relative difference of 

mean and point distribution of the two set. In these cases for 

both anticonvulsant and neurotoxicity value the mean and 

standard deviation of the training set and test set are similar. 

This shows that the spread in both set are comparable. 

 

Table 2: Descriptive statistics for the anticonvulsant and 

neurotoxicity value of the data set 

  –log (ED50)  –log (TD50) 

Statistics Train set Test set Train set Test set 

Maximum 4.804 4.572 4.573 4.158 

Minimum 3.169 3.060 2.856 3.009 

Mean 3.979 3.818 3.477 3.472 

σ 0.364 0.369 0.291 0.275 

-log (ED50) represent the anticonvulsant activity and –log 

(TD50) represent the neurotoxicity value and σ is the standard 

deviation. 

 

1.10. QSAR models 

 

The analysis of the GFA models produced explores the 

structural and physicochemical contribution of the compounds 

with anticonvulsant activity and neurotoxicity. A number of 

molecular descriptors were identified as being correlated with 

anticonvulsant and neurotoxicity values. Interestingly, there 

seems to be high overlap of few descriptors among the QSAR 

equations. Reported in Table 3 is the Top 3 QSAR models for 

anticonvulsant activities and Table 4 for neurotoxicity with 

their statistical and validation parameters. The presented 

models incorporate 4 to 6 descriptors and since the Topliss and 

Costello rule [31] allows the use of up to 8 descriptors for a 

training set consisting of 50 compounds and the relationship 

between adjusted coefficient of determination (R
2
adj) and 

coefficient of determination (R
2
) i.e. R

2
adj < R

2
 is true for these 

models, then they are not over parameterized. The multiple 

correlation coefficient R of these models ranges from 0.922 to 

0.961 explaining over 91% of all variance in the data set for 

both anticonvulsant activity and neurotoxicity. Supporting the 

claim, many independent QSAR models can provide useful 

activity correlation on the same data [28]. Presented in Table 5 

and 6 are the model statistics for the anticonvulsant and 

neurotoxicity models reported in Table 3 and 4 respectively. 

From Tables 5 and 6, the F test value at p < 0.05 significant 

level ranges from 45.91 to 63.89 for the anticonvulsant models 

and 115.3 to 134.9 for neurotoxicity models. These values were 

high therefore; the variation in the activity explained by the 

collective descriptors is more than could be reasonably 
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attributed to chance.  Also, the low standard error of estimation 

(SEE) for the models ranges from 0.087 to 0.153, suggesting 

that the equations have good correlation with the data and is 

statistically significant. The t-statistics for all descriptor were 

greater than 2 and their corresponding p-values are less than 

0.05 at 95% confidence level, suggesting all the descriptors in 

the regression equations were independent and make significant 

contribution to the models. The correlation between each 

descriptor was calculated and used to evaluate variance 

inflation factor (VIF) for each descriptor. Generally, if VIF is 

equal to 1, then no inter-correlation exists for each variable; if 

it falls between 1and 5, the related model is acceptable; if it is 

larger than 10, the related model is unstable and a recheck is 

necessary [38]. In the study, VIF values of the all the 

descriptors were less than five (see Table 5 and 6), indicating 

that the obtained models have statistical significance, and the 

descriptors were found to be reasonably orthogonal [39]. 

Furthermore, the predictive powers of the models assessed 

using various internal and external validation tests showed that 

the leave one out internal cross validation coefficient of 

determination R
2
CV (Q

2
) ranges from 0.821 to 0.897. Also, 

modified correlation coefficient R
2
m(loo)  introduced by Roy et 

al [42]  such that 

 

R
2

m(loo) = r
2

  

 

where r
2
 and r

2
0 are the square correlation coefficients between 

the observed and the (leave-one-out) predicted values of 

compounds with and without intercept respectively, had values 

ranging from 0.793 to 0.899 for the models. These values were 

greater than 0.5, meaning the models are stable. Also, the 

models R
2
 values were greater than their Q

2
 values, this 

indicated that they were not over-fitted [40].  

In order to ascertain whether the good results produced by 

the reported models are not due to chance correlation or 

structural dependency of the training set, Y-randomization tests 

were performed. The average values for ten randomization runs 

gave coefficient of determination 
2
rand and cross validated 

coefficient of determination 
2
rand values ranging from -0.216 

to 0.117 (see Table 5 and 6). These values were smaller than 

0.2 indicating absence of chance correlation [40]. Furthermore, 

a parameter 
c
R

2
p that relate the average randomization runs 

coefficient of determination 
2

rand and non-randomized R
2

 was 

calculated for all the models using the relation 

 

c
R

2
p = R   

 

Their 
c
R

2
p values ranged from 0.803 to 0.899.  These values are 

more than the threshold which is 0.5 and therefore the models 

are not obtained by chance [40].   

To further validate the predictive power of the models 

more explicitly, they were used to predict the activity of the test 

set data. The test set constitute s set of 30 compounds obtained 

from the data set by the method employed for dataset division 

as explained above .The R
2

pred which reflect the degree of 

correlation between the observed and predicted activity data for 

the test set [40] for the models were calculated using the 

relation below 

 

R
2
pred =    

 

Here, Yobs(test) and Ypred(test) are the observed and predicted 

activity data for the test set compounds, while  

indicates the mean observed activity of the training set. As can 

be seen in Table 3 and 4 for the anticonvulsant models, Model1 

and Model2 have R
2
pred less than the stipulated value 0.5 

therefore they are considered to be less predictive but Model 3 

has R
2

pred value of 0.735 and therefore considered as well 

predictive [40]. For the neurotoxicity models, Model5 and 

Model6 have R
2

pred less than the stipulated value 0.5 therefore 

they are considered to be less predictive but Model3 has R
2

pred 

value of 0.509 and therefore considered as well predictive. 

Golbraikh and Tropsha [34] proposed set of parameters for 

determining satisfactorily external predictive model were 

examined including: 

 

a. Q
2
 > 0.5 

b. R
2
(test) > 0.6 

c. r
2
- r

2
0/r

2 
 < 0.1 and 0.85 ≤ k ≤ 1.15 or r

2
-r’

2
/r

2
 < 0.1 and 

0.85 ≤ k′ ≤ 1.15 

d. |r
2
0-r

’2
0| < 0.3 

 

Where R
2
(test) and r

2
 represent the same parameter i.e. the 

square correlation coefficients of the plot of observed versus 

predicted values for the test set with intercept, r
2
0 is the square 

correlation coefficients between observed versus predicted 

values for the test set without intercept i.e. through the origin, 

r
’2

0 is the reverse of  r
2
0 i.e. the square correlation coefficients 

between the predicted versus observed values for the test set 

without intercept, k is the slope of the plot of observed versus 

predicted values for the test set without intercept and k′ is the 

reverse of k i.e. the slope of the plot of predicted versus 

observed values for the test set without intercept. For the 

anticonvulsant models reported in Table 3, Model1 and 

Model2 have r
2
- r

2
0/r

2 
equal to 0.300 and 0.395 respectively, 

while Model3 passed all the Golbraikh and Tropsha criteria. 

For the neurotoxicity models reported in Table 4, Model5 and 

Model6 have their r2 < 0.6 and r
2
- r

2
0/r

2 
equal to 0.329 and 

0.353 respectively, while Model4 passed all the Golbraikh and 

Tropsha criteria. In addition, modified determination 

coefficient for the test set data,  designated R
2
m(test)  determine 

the propinquity between observed and predicted activity of the 

test set using the relation and reported that a model is 

acceptable if it has R
2

m(test) > 0.5 [39, 40] For the anticonvulsant 

models reported in Table 3, Model1 and Model2 have R
2
m(test) 

values equal to 0.473 and 0.436 respectively, while model3 has 

R
2
m(test) R

2
m(test) value of 0.648. For the neurotoxicity models 

reported in Table 4, Model4 and Model5 have R
2
m(test) values 

equal to 0.558 and 0.507 respectively, while model6 has 

R
2
m(test) R

2
m(test) value of 0.212. The above analysis shows that 

Model3 and Model4 are the best model for this subset of data 

reported by the Euclidean based clustering coupled with GFA 
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Table3: Anticonvulsant models obtained by genetic function algorithm from Euclidean distance based clustering data division 

method 
Model 1 Model 2 Model 3 

pED50  = 3.996(±0.022)  

 -0.107(±0.021)AATS7p 

 +0.287(±0.038)ATSC4i 

 +0.163(±0.032)GATS8s 

 +0.374(±0.047)SpMax4Bhs 

 +0.241(±0.031)Kier1  

 -0.294(±0.028)RDF50s 

pED50   = 3.992(±0.022)   

 -0.112(±0.021)AATS7p 

 +0.316(±0.039)ATSC4i 

 +0.196(±0.031)GATS8s  

 +0.488(±0.044)SpMax4Bhs  

 -0.319(±0.028)RDF50s 

 +0.202(±0.025)Surface area 

pED50 = 3.948(±0.021)    

 +0.310(±0.025) AATS4i   

 +0.388(±0.028) Kier2 

 +0.288(±0.024) VE2_D 

  -0.193(±0.024) RDF50s 

 

VALIDATION PARAMETERS 

Internal External Internal External Internal External 

R2 0.885 R2
pred 0.482 R2 0.873 R2

pred 0.408 R2 0.850 R2
pred 0.735 

R2
adj 0.869 r2 0.666 R2

adj 0.855 r2 0.661 R2
adj 0.837 r2 0.699 

F 55.25 r2
0 0.466 F 49.32 r2

0 0.399 F 63.89 r2
0 0.688 

Q2 0.850 r’2
0 0.665 Q2 0.823 r’2

0 0.658 Q2 0.821 r’2
0 0.648 

SDEP 0.143 R2
m(test) 0.473 SDEP 0.159 R2

m(test) 0.436 SDEP 0.152 R2
m(test) 0.646 

SEE 0.135 R2
m(overall) 0.631 SEE 0.145 R2

m(overall) 0.585 SEE 0.146 R2
m(overall) 0.755 

PRESS 1.026 |r2
0-r

’2
0| 0.199 PRESS 1.265 |r2

0-r
’2

0| 0.258 PRESS 1.159 |r2
0-r

’2
0| 0.041 

LOF 0.084 k 0.969 LOF 0.084 k 0.969 LOF 0.085 k 0.993 

R2
m(loo) 0.833 r2

0- r
2

0/r
2 0.300 R2

m(loo) 0.793 r2
0- r

2
0/r

2 0.395 R2
m(loo) 0.806 r2- r2

0/r
2 0.015 

2
rand 0.107 k′ 1.026 2

rand 0.117 k′ 1.026 2
rand 0.101 k′ 1.003 

2
rand -0.209 r2-r’2/r2 0.001 2

rand -0.216 r2-r’2/r2 0.005 2
rand -0.106 r2-r’2/r2 0.074 

cR2
p 0.814 R 0.941 cR2

p 0.807 R 0.934 cR2
p 0.803 R 0.922 

 

 

Table4: Neurotoxicity models obtained by genetic function algorithm from Euclidean distance based clustering data division 

method 
Model 4 Model 5 Model 6 

pTD50 = 3.479(±0.013)  

 +0.522(±0.026) TIC5 

 -0.227(±0.016) nRing  

+0.148(±0.015)VE1_D 

 -0.269(±0.022)RDF60i 

pTD50  = 3.479(±0.012) 

  -0.211(±0.014) ETA_Epsilon_3  

 +0.482(±0.024)TIC5 

  +0.125(±0.013)VE1_D  

 -0.256(±0.021) RDF60i 

pTD50  = 3.487(±0.013)   

 +0.4278(±0.023) TIC5  

 +0.180(±0.013)RotBtFrac  

 +0.125(±0.015)VE2_D 

  -0.231(±0.022)RDF60i 

VALIDATION PARAMETERS 

Internal External Internal External Internal External 

R2 0.911 R2
pred 0.509 R2 0.923 R2

pred 0.375 R2 0.919 R2
pred 0.362 

R2
adj 0.903 r2 0.623 R2

adj 0.916 r2 0.561 R2
adj 0.912 r2 0.286 

F 115.3 r2
0 0.573 F 134.9 r2

0 0.377 F 128.3 r2
0 0.185 

Q2 0.890 r’2
0 0.583 Q2 0.904 r’2

0 0.552 Q2 0.897 r’2
0 -0.116 

SDEP 0.096 R2
m(test) 0.558 SDEP 0.094 R2

m(test) 0.507 SDEP 0.096 R2
m(test) 0.212 

SEE 0.091 R2
m(overall) 0.729 SEE 0.087 R2

m(overall) 0.687 SEE 0.089 R2
m(overall) 0.677 

PRESS 0.457 |r2
0-r

’2
0| 0.010 PRESS 0.424 |r2

0-r
’2

0| 0.176 PRESS 0.459 |r2
0-r

’2
0| 0.301 

LOF 0.095 k 0.981 LOF 0.095 k 0.990 LOF 0.096 k 0.995 

R2
m(loo) 0.886 r2- r2

0/r
2 0.079 R2

m(loo) 0.899 r2- r2
0/r

2 0.329 R2
m(loo) 0.892 r2- r2

0/r
2 0.353 

2
rand 0.086 k′ 1.017 2

rand 0.101 k′ 1.007 2
rand 0.053 k′ 1.001 

2
rand -0.122 r2-r’2/r2 0.064 2

rand -0.109 r2-r’2/r2 0.017 2
rand -0.171 r2-r’2/r2 1.407 

cR2
p 0.874 R 0.955 cR2

p 0.875 R 0.961 cR2
p 0.899 R 0.958 
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Table5: The t-statistic, p-values, variance inflation factor and mean effect for each descriptor in the models for anticonvulsant 

activity obtained by Euclidean distance based clustering data division method coupled with genetic function algorithm 
 Model 1 Model 2 Model 3 

descriptors t-stat p-value VIFj MFj  t-stat p-value VIFj MFj  t-stat p-value VIFj MFj  

AATS7p -5.237 4.6E-06 1.232 -0.553  -5.438 2.3E-06 1.252 -0.313       

ATSC4i 7.476 2.6E-09 2.939 0.899  8.716 4.7E-11 2.899 0.434       

AATS4i           12.32 4.3E-16 1.610 0.166  

GATS8s 5.066 8.1E-06 1.040 1.911  5.430 2.5E-06 1.050 1.795       

SpMax4Bhs 8.058 3.9E-10 4.836 2.442  11.23 2.3E-14 4.317 1.955       

Kier 1 7.797 9.2E-10 2.593 -1.654            

Kier 2           14.04 4.6E-18 2.247 0.388  

RDF 50s -10.51 1.8E-13 2.009 -2.838  -10.56 1.6E-13 2.074 -1.865  -8.013 3.3E-10 1.640 -

0.512 

 

VE2_D           11.80 2.3E-15 1.493 0.959  

S.area      7.220 6.2E-09 1.856 -0.826       

 

 

Table 6: The t-statistic, p-values, variance inflation factor and mean effect for each descriptor in the models for Neurotoxicity 

values obtained by Euclidean distance based clustering data division method coupled with genetic function algorithm 
 Model 4 Model 5 Model 6 

descriptors t-stat p-value VIFj MFj  t-stat p-value VIFj MFj  t-stat p-value VIFj MFj  

TIC5 20.08 4.2E-74 2.994 -12.45  20.46 1.9E-24 3.268 3.234  18.57 9.8E-23 3.119 1.795  

nRing -14.24 2.7E-18 1.749 11.41            

ETA_ε_3      -15.18 2.5E-19 1.404 -0.952       

RotBtFrac           14.16 3.5E-18 1.088 -0.373  

VE1_D 9.764 1.1E-12 1.247 -5.149  9.682 1.4E-12 1.131 0.665       

VE2_D           8.57 5.1E-11 1.089 0.570  

RDF 60i -12.22 6.8E-16 2.358 7.177  -12.12 9.1E-16 2.851 -1.946  -10.49 1.2E-13 2.984 -0.993  

 

method used in this work for anticonvulsant activity and 

neurotoxicity values respectively. Thus, it can be suggested that 

these models can be used for the prediction of the 

anticonvulsant activities and neurotoxicity values for new 

compounds in the domain of these models. Observed and 

predicted values of anticonvulsant activity and neurotoxicity 

values for the training and test set compounds by Model 3 and 

4 are given in Table 7 and graphically represented in Figure 1. 

 
 

(a) 

 

 

 
(b) 

Figure1. Graphs showing the observed versus predicted activity 

of test set compounds for (a) anticonvulsant by Model 3 and 

(b) neurotoxicity by Model 4 

 

1.11. Models applicability domain 

Applicability domain (AD) is the physic-chemical, structural 

and biological space on which the training set of the model has 

been developed and for which the model can make reliable 

prediction [41]. It ensure that the model is used to predict only 

those compounds that are similar, in term of a given distance 

measure, to training set compounds. The AD for the created 
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models that is defined using Williams plots are given in Figure 

2. This allows a graphical detection of both outliers and 

influential compounds in the models [42. The influence of 

compounds on the models was detected when the leverage 

value is greater than the warning leverage (in these cases h* = 

0.3) [43]. The plot shows that the leverage values for the 

compounds are less than the warning value of 0.3 except for 

molecule 39 for neurotoxicity model. Also from Figure 2, it is 

obvious that there are no outlier compounds with standard 

residual > 3δ or < -3 δ for both training set and test sets. All 

result confirms that Model3 and Model4 are valid and can be 

utilized to predict the anticonvulsant activity and neurotoxicity 

values respectively for compounds in the AD of the models. 

 

2. Interpretation of descriptors for anticonvulsant activity 
Table7. Observed and predicted values of anticonvulsant activity and 

neurotoxicity values for test set compounds 

 

Anticonvulsant 

 

Neurotoxicity 

Sr. No Ya
obs 

Ya
pre

d Res Sr.No Yb
obs Yb

pred Res 

2 4.16 4.35 -0.18 5 3.53 3.74 -0.20 

5 4.27 4.02 0.24 7 3.55 3.66 -0.11 

7 3.94 4.22 -0.27 9 3.47 3.22 0.25 

10 4.07 4.03 0.05 10 3.06 3.31 -0.24 

11 3.53 3.64 -0.11 13 3.62 3.42 0.19 

14 4.14 3.97 0.17 15 3.12 3.36 -0.23 

16 3.90 3.82 0.08 16 3.13 3.32 -0.19 

19 3.06 3.30 -0.24 21 3.35 3.52 -0.17 

20 3.46 3.80 -0.35 23 3.49 3.74 -0.25 

24 3.81 3.57 0.23 26 3.75 3.94 -0.19 

26 3.24 3.57 -0.33 28 3.33 3.40 -0.07 

33 3.26 3.54 -0.29 31 3.57 3.35 0.22 

37 3.43 3.70 -0.26 32 3.69 3.45 0.23 

38 3.56 3.42 0.14 35 3.49 3.30 0.18 

39 3.76 3.46 0.30 38 3.36 3.51 -0.14 

40 3.98 4.17 -0.19 39 3.47 3.37 0.09 

42 3.80 3.76 0.04 40 3.53 3.41 0.12 

44 3.46 3.71 -0.25 43 3.11 3.14 -0.0 

45 3.82 3.89 -0.07 51 3.34 3.52 -0.18 

50 3.87 3.98 -0.11 52 3.62 3.85 -0.23 

52 4.01 3.86 0.15 53 3.76 3.99 -0.23 

56 4.57 4.48 0.09 54 4.16 4.05 0.11 

58 4.44 4.46 -0.02 56 3.86 4.11 -0.25 

60 4.33 4.12 0.22 59 3.01 3.27 -0.26 

64 4.09 4.13 -0.04 60 3.81 3.99 -0.19 

65 4.08 4.37 -0.28 64 3.70 3.48 0.22 

72 3.63 3.39 0.24 65 3.39 3.51 -0.12 

74 3.55 3.45 0.09 68 3.63 3.64 -0.01 

76 3.48 3.21 0.27 73 3.01 3.01 0.01 

79 3.83 3.83 0.01 75 3.21 3.46 -0.24 

Note: the serial number correspond the position occupied by the test 

set data in Table 1. Ya
obs and Ya

pred are the observed and predicted 

anticonvulsant activity values. Yb
obs and Yb

pred are the observed and 

predicted neurotoxicity value. Res is the difference between observed 

and predicted neurotoxicity value 

 

The selected model for anticonvulsant activity is Model 3 (see 

Table 3) and contained the following descriptors AATS4i, 

Kier2, VE2_D and RDF50s. The mean effect (MF) values for 

each descriptor are reported in Table 5. Generally QSAR 

equation is a result of mutual effect of different descriptors on 

the activity. The overall activity of molecule is determined by 

increase, decrease or mutual difference in the value of these 

descriptors. Assessment of these descriptors may be a starting 

point for designing anticonvulsant molecule with improved 

activities and to gain useful chemical insight into the  

 

 

(a)                                                (b) 

Figure2.  Williams plot for (a) anticonvulsant (Model3) and (b) 

neurotoxicity (Model4) 

anticonvulsant activity for the compounds used in training the 

model, interpretation to the descriptor in the model is provided 

below. 

The first descriptor in the model is AATS4i belonging to 

the family of autocorrelation descriptors that are based on 

autocorrelation function using a particular physico-chemical 

properties as the weighting scheme. It is a member of the most 

known spatial autocorrelation of a topological structure (ATS) 

descriptors defined on a molecular graph which are based on 

graph invariant describing how the property considered is 

distributed along the topological structure of molecule [47].  

Usually, they assume an additive scheme and thus correspond 

to a decomposition of the square molecular property consider 

in different atomic contributions [13]. The average of spatial 

autocorrelation of a topological structure (AATS) descriptors 

are obtained from ATS by dividing each term from by the 

corresponding number of contributions, thus avoiding any 

dependence on molecular size [13]. Generally, this class of 

descriptors expresses how numerical values of the 

autocorrelation function at intervals equal to the lag are 

correlated. AATS4i is specifically described as the average 

autocorrelation of topological structure (Broto-Moreau) -lag 4 

weighted by first ionization potential [13]. The first ionization 

potential of pairs of atoms that are four bonds apart (i.e. path 

length of four) is the weighting scheme used, thus, changing the 

type of atoms or group that are four path length apart changes 

the AATS4i values. It was reported that ATS4 value increase as 

the ionization energy of substituted atom reduces [13]. Using 

training set only (see Table 1and 8) it was observed that 

molecules containing phenyl ring carrying oxygen and halogen 

have a higher value of this descriptor. AATS4i has the lowest 

absolute mean effect (MF) value of 0.166 indicating it has the 

least influence in determining the anticonvulsant activity of the 

molecules used to construct the model in relation to other 

descriptor [14]. Considering the regression coefficients in the 

equation and the sign of the MF, higher numerical value of this 

descriptor reduces ED50 value thereby increasing the 

anticonvulsant activity of the molecule [35]. 

The second descriptor in the model is Kier2 defined as the 

second order shape attribute (second order kappa shape index) 

[44]. It belongs to the family of topological indexes, based on 

molecular connectivity approach that give the shape attribute of 

the molecule. These indexes were derived based on the 
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assumption that the shape of a molecule is a function of the 

number of atoms and their adjacency relationships(bonding 

scheme) and the use path count designated as ‘
m
P’ was used as 

information source to capture the information about different 

structure possessing different shape, . The counts of each order 

of path length can be viewed as describing individual attributes 

of shape, each a part of the manifold of attributes into which 

shape may be dissected. In order to transform ‘
m
P’ into an 

index that carries information for any number of atoms in the 

molecule a particular shape attribute ‘
m
Pi’ having an 

intermediate relationship between two extreme shapes was 

defined. It is generally true that the shape of each molecule in 

an isomeric series is different and so, the extreme shapes must 

be common to subsets of molecules of any number of atoms. 

Therefore, the extremes selected for any order of attribute, m, 

are the maximum, 
m
Pmax, and minimum, 

m
Pmim, counts of paths 

in the molecular graphs of molecules with a common atom 

count. Therefore, a shape attribute of a particular order, m, for 

a particular molecule, i, is: 

 
m
Pmax ≥ 

m
Pi ≥ 

m
Pmin 

Note that the number of atoms is the same for all three 

structures. This set of numerical relationships was transformed 

into a single number for each attribute by examining each order 

‘m’ and deriving an algorithm to encode the shape information. 

Specifically for second order shape attribute-defined by the 

count of two-bond path ‘
2
Pi’ and related to the shape extremes 

represented by 
2
Pmax and 

2
Pmin a star graph in which all atoms 

but one are adjacent to a central atom was used and the 

numerical value of 
2
Pmax for any count of atom A is 

2
Pmax = (A-

1)(A-2)/2 and the numerical value of 
2
Pmin for any count of 

atom A is 
2
Pmin = A-2. An algorithm which yields a numerical 

index for any molecule with A atoms and with 
2
Pi was derived 

(embracing the information for the extremes in the equation 

above) using the product ratios of 
2
Pi to 

2
Pmax and 

2
Pi to 

2
Pmin 

such that it give an index of shape of order two (using 
2

 

(kappa) as the index symbol) [44]: 
2

 = 2 (
2
Pmax 

2
Pmin)/(

2
Pi)

2
 

The scaling factor of 2 in the numerator makes the value 
2
K = A-1 for all linear graphs, where A-1 is the number of 

graph edges of skeletal bonds for acyclic molecules. This 

equation can be expressed in terms of the count of atoms A:  
2

 = (A – 1) (A – 2)
2
/ (

2
Pi)

2
 

 
2

 encode information about branching and relative spatial 

density of molecules i.e. it gives information relating to the 

degree of star graph or linear graph-likeness of a molecule. 

With increased branching or cyclicity the value of this 

descriptor decreases. Its value increases with increase in the 

covalent radii of the molecule - as reported for butyl halide 

with bromobutane having the highest 
2

 – because the changes 

parallel a shape that is less star-like [44]. Using training set 

only (Table 1and 8) and comparing molecules 1,3, 4, 6, 8, 9 

and 12, it was observed that molecule 3 has the highest value of 
2

 descriptor. This may be due to increase in linear graph-

likeness. Molecule 12 has lower value of this descriptor despite 

increase in linearity compare to molecule 9, however this 

decrease may be attributed to the addition of O(sp
3
) with lower 

covalent radius(0.74) compare to C(sp
3
) with a higher covalent 

radius (0.77). Another example was observed in molecule 15 

and 17 whose 
2

 descriptor value are similar and higher when 

compare to molecule 18, this may be attributed to the presence 

of additional N(sp
2
) in the pyrazine ring present in molecule 18 

that imparted further reduction in covalent radii compare to the 

pyridine ring in molecules 15 and 17. Descriptors values for the 

molecules that constitute the training set can be found in Table 

S1 in the supplementary file. For the QSAR model Kier 2 has 

absolute mean effect (MF) value of 0.388 which is greater than 

that of AATS4i but lesser than the remaining two descriptors. 

This indicates Kier 2 has second least influence in determining 

the anticonvulsant activity of molecules used to construct the 

model in relation to other descriptor. Considering the 

regression coefficient in the equation and the sign of the MF, 

higher numerical value of this descriptor reduces ED50 value 

thereby increasing the anticonvulsant activity of the molecules. 

The third descriptor in the model is VE2_D defined as the 

average coefficient sum of the last eigenvector from 

topological distance matrix (VE2_D) [13]. It is among the 

eigenvalue based descriptor (spectral indices) derived from 

graph theoretical matrix. specifically obtained from the 

coefficients of the eigenvector associated with the unique 

negative eigenvalue of the distance matrix which were used as - 

local vertex invariants (LOVIs), able to provide discrimination 

among graph vertices; higher values correspond to vertices of 

lower degree, those farther from the center or from a vertex of 

high degree. This makes them qualify as index of branching 

with lower value corresponding to increase branching and 

higher value corresponding to less branching as evident in the 

substitution of H atom on the phenyl ring for series of N,N-

dimethyl-α-bromo-phenetylamines with bulkier group or more 

electron with drawing group like CH3, F, Br est.[13] Based on 

the sum of these LOVIs, the VED indices were proposed as 

molecular descriptors [13]: 

VE2_D =   and VE_D1 =  

Where A is the number of molecular graph vertices and  are 

the coefficients (i.e., loadings) of the eigenvector associated 

with the largest negative eigenvalue (i.e. A
th

 eigenvalue of the 

decreasing eigenvalue sequence). Using training set only 

molecule with less branching on β-carbon of molecule and 

molecule with bulkier O(sp
3
) and O(sp

2
) in their skeleton had 

higher value of this descriptors. From Table 5, VE2_D has the 

highest absolute mean effect (MF) value of 0.959 indicating 

that it has the highest influence in determining the 

anticonvulsant activity of molecules used to construct the 

model in relation to other descriptor. Considering the 

regression vector and the sign of the MF, higher numerical 

value of this descriptor reduces ED50 value thereby increasing 

the anticonvulsant activity of the molecules. 

   Radial distribution function descriptor (RDF) was the last 

descriptor in the model. it’s a 3D structure descriptors based on 

the distance distribution in the geometrical representation of 

molecules [13]. They can provide information about steric 

hindrance or structure/activity properties of a molecule, 

distribution of interatomic distances in the entire molecule, 

bond distances, ring types, planar and nonplanar systems, and 

atom types depending on the property of the molecule or atom 

included in the function as the weighting scheme [13]. 

Formally, the radial distribution function of an ensemble of 

“A” atoms can be interpreted as the probability distribution of 

finding an atom in a spherical volume of radius R and the 

general form of the radial distribution function is represented 

by the equation below 

  

Where f is a scaling factor, w characteristic atomic properties 

of the atoms i and j, rij the interatomic distance between the ith 

and jth atom, and A the number of atoms. The exponential term 

contains the distance rij between the atoms i and j and the 
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smoothing parameter , which defines the probability 

distribution of the individual interatomic distances and can be 

interpreted as a temperature factor that defines the movement 

of atoms [13]. The function plots shape (i.e., distance between 

two atoms) on the x-axis, the respective property coefficient on 

the y-axis thereby separating geometry from property 

distribution. With  =1 this function is a representation of 

the overall shape of the molecule based on the frequencies of 

all atom pair distances within each radial distance step [50]. 

A typical RDF descriptor is denoted by RDFЅω where Ѕ is 

the interatomic distance which ranges 1.0 ≤ s ≤ 15.5 in units of 

0.5 and ω is the weights which could be designated unweighted 

(u) or any measurable molecular property. Specifically, 

RDF50s define as the radial distribution function at 5.0 

interatomic distance weighted by relative I-state (electronic 

inductive effect) [21] is the fourth descriptor in the selected 

QSAR model. This suggest the occurrence of a linear 

relationship between anticonvulsant activity and the 3D 

molecular distribution of relative inductive effect of atoms or 

group of atoms in the molecules calculated at radius of 5.0 Å 

from the geometrical centers of each molecule. The presence of 

electronegative atom in a chain of carbon atom withdraw 

electron towards itself causing positive charge to be relayed 

among the other atoms in the chain. This electron-withdrawing 

inductive effect is also called negative (-) I-effect. However 

some groups, such are alkyl group, are less electron-

withdrawing than hydrogen and are therefore considered as 

electron releasing and tend to give electron whenever they are 

attached as a substituent, leading to induction effect known as 

positive (+) I-effect. Generally, relative inductive effects have 

been experimentally measured with reference to hydrogen, in 

decreasing order of -I effect or increasing order of +I effect, as 

follows: 

–NH3
+
 > –NO2 > –SO2R > –CN > –SO3H > –CHO > –CO > –

COOH > –COCl> –CONH2 > –F > –Cl > –Br > –I > –OR > -

OH > –NH2 > –C6H5 > –CH=CH2 > –H 

The strength of inductive effect is also dependent on 

the distance between the substituent group and the main group 

that react; the greater the distance, the weaker the effect. Partial 

charges on the atoms in a molecule influences RDF descriptor 

greatly leading to descriptor with either characteristic 

positive/negative peak distribution [45]. Using the training set 

molecule (see Table 1 and 8), higher value of RDF for 

molecule 75 may be attributed to additional carbonyl group on 

its chain. In the model RDFs had the second highest absolute 

mean effect MF value of 0.512, indicating that it has the 

highest influence in determining the anticonvulsant activity of 

molecules used to construct the model in relation to other 

descriptor. The negative sign of its mean effect value indicted 

that higher numerical value of this descriptor increases ED50 

value, thereby reducing the anticonvulsant activity of the 

molecules. 

3. Interpretation of descriptors for Neurotoxicity value 

The selected model for neurotoxicity studies is Model 4 (see 

Table 4) and it contained the following descriptors TIC5, 

nRing, VE1_D and RDF60i. The mean effect MF values for 

the descriptor incorporated into the model are presented in 

Table 6. The first descriptor in the model is TIC5 define as 

total information content index of neighborhood symmetry of 

order 5 (13). It is a member of topological information indices 

of a graph based on neighbor degree and edge multiplicity. 

This family of descriptor is calculated from a hydrogen 

included molecular graph by partitioning graph vertices into 

equivalence classes. Two vertices vi and vj are said to be 

equivalent if they belong to the same chemical element, have 

same vertex degree (same neighbor), mth order path starting 

from vi (
m
Pi) correspond to mth order path starting from vj (

m
Pj) 

and have same conventional bond order of the edges in the 

path. Specifically, total information content of order m 

descriptors is obtained by multiplying the mth order 

neighborhood information content (ICm) with the number of 

graph vertices A where ICm is obtained from Shannon’s 

enthropy: 

  and  

Where the summation goes over the G equivalence classes, Ag 

is the cardinality of the gth equivalence class. This class of 

descriptor is interpreted as a measure of structural complexity 

per vertex [13].  It was observed that increase in the linearity 

Table 8: Model 3 descriptors values 
S.No pED50 AATS4i Kier2 VE2_D RDF50s 

1 4.343 0.529 -0.250 -0.641 -1.231 

3 4.354 0.472 0.810 -0.574 -0.723 

4 4.499 1.162 0.074 0.439 0.398 

6 3.846 1.655 -0.692 -0.908 -0.543 

8 4.029 0.814 -0.814 -0.716 -1.214 

9 4.115 0.284 0.263 -0.075 -0.381 

12 3.992 0.626 -0.281 -0.534 -0.292 

13 3.383 -0.318 -0.118 0.103 0.924 

15 3.624 -2.471 0.301 1.664 1.417 

17 3.852 -1.142 0.301 0.724 1.270 

18 3.493 -0.367 -0.027 -0.078 0.758 

21 3.259 -1.005 -0.027 -0.078 0.809 

22 3.567 -0.726 -0.602 0.091 -0.887 

23 3.774 -0.786 -1.753 2.576 -0.221 

25 4.036 -1.481 0.951 1.215 0.342 

27 4.411 -1.025 0.951 1.215 0.425 

28 4.278 -0.721 0.951 1.215 0.499 

29 4.168 1.675 -1.075 0.247 -0.566 

30 3.680 0.353 -0.250 -0.591 -0.443 

31 3.944 0.266 -0.118 0.103 -0.092 

32 3.603 -0.189 -0.250 -1.049 -1.162 

34 3.996 1.057 -1.335 -0.331 -1.250 

35 3.793 0.074 -0.814 -0.716 -1.005 

36 3.439 -0.020 -0.765 -0.747 -0.481 

41 3.743 -1.326 0.378 0.665 0.410 

43 3.866 -0.517 0.810 -0.063 0.860 

46 4.140 2.435 -0.500 0.203 1.962 

47 4.039 1.055 -0.692 -0.908 -1.102 

48 4.292 2.557 -0.389 -0.466 1.443 

49 4.080 2.726 -0.580 -1.068 1.651 

51 4.036 1.710 -0.145 -0.606 0.045 

53 4.346 0.018 2.025 -0.739 0.941 

54 4.460 -0.605 3.102 -0.490 1.087 

55 4.804 -0.582 3.102 -0.490 0.348 

57 3.533 0.165 -0.814 -0.716 -0.922 

59 4.542 -0.179 -1.335 2.871 -1.388 

61 4.606 -0.061 -0.194 2.328 -0.616 

62 4.421 -0.260 -1.335 2.401 -1.458 

63 4.275 -0.936 -0.814 2.164 -1.463 

66 4.034 0.086 -1.373 1.752 -1.651 

67 4.234 -0.361 1.906 -0.740 0.935 

68 4.073 0.082 -0.027 -0.093 0.520 

69 4.096 -0.414 0.885 -0.492 0.817 

70 4.085 -1.316 1.400 -0.565 0.278 

71 3.756 -0.880 -0.027 -0.767 -0.445 

73 3.593 -0.272 -1.409 0.336 -0.612 

75 3.708 -0.631 2.485 -0.776 3.957 

77 3.169 -0.607 -0.500 -0.720 -0127 

78 3.821 -0.332 1.454 -0.391 2.070 

80 3.733 0.567 -1.278 0.032 0.282 

Note: the serial number correspond the position occupied by the 

training set data in Table 1 
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of molecules increases the value of this descriptor e.g. 

comparing  molecule 3 with higher value of this descriptor to 

molecule 1 (see Table 1 and 9). TIC5 has mean effect MF value 

of -12.4 which is the highest absolute MF value indicating that 

it has the highest influence determining the neurotoxicity of the 

molecules in relation to other descriptor. The negative value of 

MF shows that higher numerical value of this descriptor, 

decreases pTD50 value thereby increasing the TD50 value 

indicating higher value of this descriptor reduces the 

neurotoxicity of the molecules. The values of this descriptor 

can be increased by increasing the number of atoms that are 4-

bond away from a given vertex. 

The second descriptor in the model is nRings defined as the 

number of ring present in a molecule [21]. It was observed that 

molecule with the same type and number of ring have the same 

value for this descriptor e.g. molecule 1, 2, 3 est (see Table 1 

and 9). However molecule 18 has higher value of this 

descriptor compare to molecule 17 with the same number of 

ring. This observation may be attributed to the presence of 

additional N(sp
2
) on molecule 18 which reduces the size of the 

ring. nRings has mean effect MF value of 11.41 which is the 

second highest absolute MF value indicating that it has second 

highest influence determining the neurotoxicity of the 

molecules in relation to other descriptor. The positive value of 

MF shows that higher numerical value of this descriptor, 

increases pTD50 value thereby decreasing the TD50 value 

indicating higher value of this descriptor increases the 

neurotoxicity of the molecules. 

The third descriptor in the model is VE1_D defined as the 

coefficient sum of the last eigenvector from topological 

distance matrix [13]. It is among the eigenvalue based 

descriptor (spectral indices) derived from graph theoretical 

matrix. specifically obtained from the coefficients of the 

eigenvector associated with the unique negative eigenvalue of 

the distance matrix which were used as - local vertex invariants 

(LOVIs), able to provide discrimination among graph vertices; 

higher values correspond to vertices of lower degree, those 

farther from the center or from a vertex of high degree. This 

makes them qualify as index of branching with lower value 

corresponding to increase branching and higher value 

corresponding to less branching as evident in the substitution of 

H atom on the phenyl ring for series of N,N-dimethyl-α-bromo-

phenetylamines with bulkier group or more electron with 

drawing group like CH3, F, Br est. Based on the sum of these 

LOVIs, the VED indices were proposed as molecular 

descriptors [13]: 

VE_D1 =  

Where A is the number of molecular graph vertices and  are 

the coefficients (i.e., loadings) of the eigenvector associated 

with the largest negative eigenvalue (i.e. A
th

 eigenvalue of the 

decreasing eigenvalue sequence). Using training set data it was 

observed that increasing the molecular weight of the compound 

either by inclusion of additional –CH2- or heteroatoms into the 

chain and increased branching increases the value of this 

descriptor e.g. the order of increasing VE1_D value for the first 

four molecule was molecule 1 < 2 < 3 <  molecule 4. Similar 

for molecule 45 < 46 < 47(see Table 1 and 9). VE1_D has 

mean effect (MF) value of -5.149 which is the least absolute 

MF value indicating that it has the least influence in 

determining the anticonvulsant activity of molecules used to 

construct the model in relation to other descriptor. The negative 

sign of the MF shows that higher numerical value of this 

descriptor reduces pTD50 i.e. increasing the TD50 indicating 

that higher values of this descriptor reduces the neurotoxicity 

of the molecules. 

 

Table 9: Model 4 descriptors values 
S.No pTD50 TIC5 nRing VE1_D RDF60i 

1 3.644 -0.208 1 -0.746 -0.266 

2 3.736 0.264 1 -0.658 0.274 

3 3.815 0.806 1 -0.601 0.988 

4 3.755 0.024 1 0.774 0.384 

6 3.480 -0.149 1 -0.602 -0.249 

8 3.360 -0.729 1 -1.019 -0.943 

11 3.469 -0.729 1 -0.881 -0.501 

12 3.453 -0.167 1 -0.164 0.547 

14 3.593 -0.219 2 0.480 0.169 

17 3.180 -0.403 2 0.181 -0.532 

18 3.692 1.158 2 2.710 1.241 

19 3.692 1.099 3 1.382 -0.253 

20 3.351 -0.161 3 0.277 -0.303 

22 3.493 -0.139 3 0.041 -0.960 

24 3.001 0.561 2 -0.413 1.397 

25 3.183 -0.593 2 0.086 -0.737 

27 3.247 -0.781 2 0.086 -0.669 

29 3.001 -0.920 2 0.964 -0.214 

30 3.548 0.699 2 1.923 1.721 

33 3.495 0.050 2 -0.164 0.745 

34 3.495 -0.615 1 0.166 -0.341 

36 3.694 -0.331 1 0.481 -0.822 

37 3.191 0.327 1 -0.582 0.923 

41 3.343 -0.615 1 0.166 -0.334 

42 3.288 -1.003 1 -0.879 -0.644 

44 3.571 0.305 1 0.947 -0.121 

45 3.571 0.523 2 1.775 0.577 

46 3.482 0.168 2 -0.011 0.932 

47 3.744 -0.874 1 0.296 -1.817 

48 3.512 -0.729 1 -1.020 -0.977 

49 3.682 -0.290 1 -0.433 -0.751 

50 3.482 -0.165 1 -1.160 -0.874 

55 4.573 2.923 2 -0.117 1.043 

57 3.064 -0.933 2 -0.880 -0.371 

58 3.497 0.701 1 1.383 -0.089 

61 3.643 -1.418 1 1.694 -1.401 

62 3.986 0.024 1 -0.254 -0.604 

63 3.590 0.958 1 -0.463 0.816 

66 3.667 0.561 1 -0.739 0.526 

67 3.596 1.067 1 0.023 0.891 

69 3.367 -1.819 2 1.694 -1.586 

70 3.594 1.158 1 -0.477 0.436 

71 2.856 -0.792 2 -0.676 0.979 

72 3.157 0.246 2 -1.279 0.044 

74 3.744 1.503 2 1.924 1.753 

76 3.003 0.089 2 -1.279 0.301 

77 3.127 -0.213 2 0.181 -0.169 

78 3.554 1.820 2 -0.193 2.514 

79 3.336 0.187 2 -0.883 0.011 

80 3.266 -0.108 2 0.023 -0.318 

the serial number correspond the position occupied by the training set 

data in Table 1 
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The last descriptor in the model is RDF 60i which is radial 

distribution function descriptor at 6.0 interatomic distance 

weighted by first ionization potential [21]. This suggest the 

occurrence of a linear relationship between neurotoxicity 

values and the 3D molecular distribution of  first ionization 

potential of atoms in the molecules calculated at radius of 6.0 

Å from the geometrical centers of each molecule. Using the 

training set molecule (see Table 1 and 9),  molecules 

containing one phenyl ring to which atoms like F, CL is 

directly attached has lower value of this descriptor e.g. 

molecule 76 had RDF60i value > that of molecule 77 > that of 

molecule 79. Therefore, addition of atoms with reduced first 

ionization potential gives lower value of this descriptor.  

Ionization potential is the amount of energy required to remove 

the most loosely bond electron, valence electron of an isolated 

gaseous atom to form a cation [44]. RDF60i has mean effect 

(MF) value of 7.177 which is the third absolute MF value 

indicating that it had the third influence in determining the 

anticonvulsant activity of molecules used to construct the 

model in relation to other descriptor. The positive sign of the 

MF showed that higher numerical value of this descriptor 

increases pTD50 i.e. reducing the TD50 indicating that higher 

values of this descriptor increases the neurotoxicity of the 

molecules. 

4. Conclusion 

The anticonvulsant activity and neurotoxicity value of N-

benzylacetamide and 3-(phenylamino)propanamide derivatives 

had been quantitatively analyzed in terms of molecular 

descriptors. The statistically validated QSAR models provided 

rationales to explain the anticonvulsant and neurotoxicity 

activity of these derivatives. The descriptors identified through 

GFA analysis have highlighted the role of the average 

autocorrelation of topological structure lag 4 weighted by first 

ionization potential (AATS4i), second order shape attribute 

(Kier 2), average coefficient sum of the last Eigen vector from 

topologicl distance matrix (VED-2) and radial distribution 

function at 5.0 inter-atomic distance weighted by relative I-

state in affecting the anticonvulsant activity of the studied 

group of compound. For a compound belonging to the group of 

the studied compound to more potent higher values of AATS4i, 

Kier 2 and VED_2 and lower value of RDF50s are conducive. 

Also, total information content index of the neighbourhood 

symmetry of 5-order (TIC5), number of ring (nRing), 

coefficient sum of the last Eigen vector from topologicl 

distance matrix (VED-1) and radial distribution function at 6.0 

inter-atomic distance weighted by first ionization potential 

were descriptor found to influence the neurotoxicity of this 

group of compound. And for any member of the group to be 

less toxic, lower value of TIC5, VE1_D and higher value of 

nRing and RDF60i is required. Applicability domain analysis 

revealed that the suggested models had acceptable 

predictability with the entire molecules that constituted the 

training dataset remaining within the applicability domain of 

the proposed models and the entire test dataset were evaluated 

correctly except for one molecule (see Figure 2). 
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