Role of biological nitrogen fixation in rice

YosefTabar,s
Young Researchers and Elit Club, sari Branch, Iran Islamic Azad University, sari, Iran

Abstract: Rice (oryza sativa L.) is one of the most important cereal crops of the world. Nitrogen deficiency is one of the most important nutritional disorders in lowland rice producing. Fertilizer nitrogen has become a major input in crop production around the world. The economic and environmental costs of the heavy use of chemical N fertilizers in agriculture are a global concern, sustainability considerations mandate that alternatives to N fertilizers must be urgently sought. The biological nitrogen fixation (BNF) is a way to eliminate the usage of chemical fertilizer and also to prevent the damage to the agricultural ecosystem. Biofertilizers has already proved to be the best over the agro chemicals and have been showing the tremendous effect on the global agriculture productivity since the past two decades.

Keywords: Rice-Nitrogen fertilizer- Biological nitrogen fixation(BNF).

1. Introduction
The world rice plant is completely composed of the regularity, order and rules, through many of them are still too complicated for us to comprehend (Nachimuthu et al, 2007). Rice (oryza sativa L.) is one of the most important cereal crops of the worlds such as Asia, Africa, South America and Australia (Bahmanyar & Ranjbar, 2007) in terms of food, area and production (Bakhsh et al, 2011), grown in wide range of climatic zones, to nourish that mankind (Chaturvedi, 2005). Although the importance of rice declines with economic growth, demand for rice will continue to grow for many years, and this growth could occur at pace that exceeds growth in supply. If this security of millions of poor Asians. The role of rice research is to increase supply at a rate that exceeds growth in demand through increased farm level productivity. Many factors affect growth in rice demand, but the main ones are population growth, income growth and urbanization (Dawe et al, 2000). The yield of rice is much lower than world average. It mainly due to lack potential varieties and management practices. Improve varieties and judicious application of fertilizer are two of the most effective means for maximizing yield of rice (Islam et al, 2006). The future need for rice (more than 30% increase by 2020) to be grown with less land in the intensive rice areas, and with new technologies in the rainfed systems, demands that science explore new frontiers (fischer, 2000). Prices will also affect the quantity of rice demanded by consumers, but this effect tends to be small because rice is a staple food and is so important to consumers that its demand is relatively insensitive to changes in prices. Furthermore, long-term forecasts of prices are notoriously difficult to make, so these effects are not discussed further (Dawe, 2000).

Rice production depends on several factor: climate, physical conditions of the soil, soil fertility, water management, sowing date, cultivar, seed rate, weed control and fertilization, nitrogen fertilizer is a major essential plant nutrient and key input for in increasing crop yield (Yoseftabar et al, 2012). With the increase in cultivation of rice, use of chemical fertilizers is also increasing simultaneously as it can rapidly give more reliable boosts to crop yield (Saikia et al, 2011). Nitrogen fertilizer is more urgent for security rice production, many investigators studied the important of nitrogen fertilizer rates, the highest plant height, number of panicle/m2 seed weight/panicle, panicle length, grain and straw yields were obtained when the nitrogen fertilizer rates increased up to 80 kg N/ha (Sharief et al, 2006). Biological nitrogen fixation may generate benefits because of higher yields, lower use of fertilizer N, or both (Dawe, 2000).

2. The Role of Nitrogen in Rice Production
Nitrogen is a constituent of compounds such as amino acids, proteins, RNA, DNA, and several phytohormones and is thereby an essential macro element for plants (Wang and Schjoerring, 2012). Is not only the constituent of key cell molecules such as amino acids, nucleic acid, chlorophyll, ATP and several plant hormones, but aslo the pivotal regulator involved in many biological processes including carbon metabolism, amino acid metabolism nucleic acid metabolism and protein synthesis (Cai et al, 2012). Nitrogen is essential for all living organisms, the synthesis of cellular proteins, amino acids, nucleic acids, purine and primidine nucleotide are dependent upon N. It is the most abundant mineral element in plant tissues which is derived from the soil, however excess N may cause significant biochemical changes in plants and may lead to nutritional imbalances (Salim, 2002). Nitrogen taken up during early growth stages accumulated in the vegetative parts of the plant and is utilized for grain formation. A large protein of the nitrogen is absorbed during differentiation. the leaves and stems contain a large portion of the nitrogen taken up by the plant (Abou-khalila, 2012). Nitrogen fertilization increased the number of stems and panicles per square meter and the total number of spikelets, reflecting on grain productivity. Excessive tillering caused by inadequate nitrogen fertilization reduced the percentage of fertile tiller, filled spikelet percentage and grain mass (Dastan et al, 2011). Rice needs 1 kg of nitrogen to produce 15-20 kg of grain. Lowland rice in the tropics can use enough naturally available N to produce 2-3 t/ha-1 for higher yield, additional N must be applied (ladha & reddy, 2000).
3. Future Demand for Nitrogen Fertilizer on Rice

Among different nutrients nitrogen is one of the essential macronutrient required for proper plant growth (Gholizadeh et al, 2011). Nitrogen management is essential for rice under aerobic culture as nitrogen use efficiency is be in the range of 40 to 60 percent, application of nitrogen at right time is perhaps the simplest agronomic solution for improving the use efficiency of nitrogen (Ganga Devi et al, 2012). Approximately 65% of the applied mineral N is lost from the plant –sioł system through gaseous emissions, runoff, erosion and leaching. Environmental impact of this loss ranges from green house effect, diminishing stratospheric ozone and acid rain to changes in the global N cycle and nitrate pollution of surface(Saikia et al,2012). Irrigated rice occupies 50% of total rice area and produces 75% of total rice output,further intensification of irrigated rice ecosystem is necessary to feed the growing population and maintain food security in coming years(Nachimuthu et al, 2007). Nitrogen is normally a key factor in achieving optimum lowland rice grain yields, it is however one of the most expensive inputs and if different ecosystems,many of the worlds rice is grown under irrigated or rainfed lowland conditions,soil under these conditions are saturation,increasing rice yield per unit area through use of appropriate N management practices has become an essential component of modern rice production technology(Metwally et al, 2011). Moveover the production of inorganic N by the haber-bosch process generates huge amount of co2,between 0.7-1.0 tonnes per tonnes of ammonia.At the same time due to unavailability of fossil fuels, the price of chemical fertilizers is also increasing rapidly since inorganic fertilizers are derived from fossil fuels particularly natural gas. There are also problem of losses of fertilizer after application through leaching, volatilization and through denitritification overall, effects of these problems requires more concentration on greater access to in expensive biofertilizer technologies, as they are ecologically sound and their application could help to minimize the global warming as well as to reduce the fertilizer input in farming practices (Saikia et al,2012). In the past few decades, chemical fertilizers have widely spread throughout the world focusing that the soil is intert medium for plant roots, rather than as a living biosphere in which the crop is only one of hundreds or thousands of interacting species,however, it is now realized that in fields under intensive monoculture which receive heavy applications of chemical fertilizers alone,there is a slow decline in productivity, this decline occurs even in irrigated paddy fiels(Siavoshi et al, 2010). Increase use of nitrogenous(N) fertilizer has greatly changed the global N-cycle and produced nitrogenous gases of environmental signicance. While nitrous oxide(N2O) emissions contribute to global greenhouse gas accumulation of ground water quality by N use in agriculturl is essentially a nitrate leaching problem, despite these reasons, for the past half a century, supply of nitrogen through fertilizers has been a powerful tool for increasing the yield of cultivated plants such as cereals. Millions of tonnes of nitrogenous fertilizers are applied for crop production worldwide(Hakeem et al, 2012). Rice crop usually take half of the applied N to yield above ground biomass, the other half of the N is dissipated in the wider environmental and ecological problem. The efficient N use in critical to produce enough food for feeding the growing population and avoid large scale degradation caused by excess N (Nachimuthu et al, 2007). Application of nitrogen fertilizers are responsible for emissions of green house gases like nitrous oxide(n2o) and ammonia(NH3) besides supplying nitrogen,ammonia can also increase soil acidity. Excessive nitrogen fertilizer application lead to pest problems by increasing the birth rate,longevity and overall fitness of cereal pests(Siavoshi et al, 2010).Excessive application of chemical nitrogen fertilizer can result in a high soil nitrate concentration after crop harvest,this situation can lead to increase in the level of ntrate contamination of potable water, because nitrate remaining in the soil profile may leach to ground water(Azarpour et al,2011).

4. Potential Benefits of Biological Nitrogen Fixation

Nitrogen(N)fertilizer is a major input for rice, only 30-40% of applied N is used by the crop, however, due to losses through volatilization, denitritification, leaching and runoff(Kumar et al, 2000). Therefore, when an excess of N cannot be totally avoided,it should also be important to search for species or genotypes that are able to absorb and accumulate high concentrations of N or those which can grow and yield well under low N conditions i.e.N-efficient genotypes to work out their physiological N uptake kinetics and finally determine the biochemical pathway of the nitrogen absorbed from the soil. This will help us in improvement of N-uptake efficiency which ultimately leads to the increase in the nitrogen use efficiency(NUE) among the crop plants as it has a practical merite because millions of tones of N-fertilizers are applied to the soil to increase crop productivity per unit area(Hakeem et al, 2012). Diazotropic microorganisms are able to fix atmospheric N through biological nitrogen fixation(BNF) process, this process benefits the agriculture sector especially for reducing cost of inorganic nitrogen fertilizer, it is due to ability of the microorganisms to convert atmospheric N into ammonia(NH3) which is useable by plants(Shaffie et al, 2012). The utilization of biological nitrogen fixation method can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution to a considerable extent(Azarpour etal,2011). This situation has encouraged researchers to study the non-chemical sources of nutrients to replace them with the currently used chemical ones. Sme micro organisms live in symbiosis with plants root and improve their growth, which are generally called plant growth promoting Rhizobacteria(PGPR)(Shokouri et al, 2012). Nitrogen-fixing organisms are generally active in plant root zone soil, plants that are capable of releasing exudates exhibit higher nitrogen fixation activity in soil(Shridhar, 2012). Biological nitrogen fixation may generate benefits because of higher yields, lower use of fertilizer N ,or both,such yield increases could potentially be due to improved congruence between plant N demand and supply,resulting in an enhanced C sink and photosynthesis(Dawe, 2000). Biological nitrogen fixation is carried out only by prokaryotes, which may be symbiotic or free living in nature,it is well documented that biological nitrogen fixation mediated by nitrogenase enzymes is a process important to the biological activity of soil. Nitrogenase activity in soil depends on ecological conditions in association with the specific nitrogen fixation capabilities of certain
microorganisms and plant genotypes under various climatic conditions, however the degree of nitrogenase activity is plant specific, the nitrogen fixation activity of free-living, non-photosynthetic aerobic bacteria is strongly dependent on favorable moisture conditions, oxygen concentration and a supply of organic C substrates (Shridhar, 2012). Several bacteria that are associated with the roots of crop plants can induce beneficial effects on their hosts and often are collectively referred to as plant growth promoting rhizobacteria (Azarpour et al, 2011). Thus a significant reduction in the relative use of fertilizer N can be achieved if atmospheric N is made available to non-legumes directly through an effective associative system with same of the characteristics of legume symbiosis (Saikia et al, 2012). The biological fixation of nitrogen produced by these organisms can constitute a significant and ecologically favorable contribution to soil (Azarpour et al, 2011). Azotobacter and Azospirillum are free living (non-symbiosis), nitrogen fixing bacteria which live in Rhizospher and improve plant growth and yield under proper condition. These bacteria generally improve plant root development, water and nutrient absorption and fix air nitrogen into soil (Shokouri et al, 2012).

5. Potential Benefits of Biological Nitrogen Fixation for Rice

The environmental benefits of BNF in rice are likely to be more substantial than the finalical benefits to farmers in many areas, the share of water pollution caused by nitrogen runoff from fertilizers is very high, thus, a 50% reduction in the use of mineral N fertilizer would have significant health, environmental, and economic benefits such as improved quality of drinking water and restoration of habitats for quatic life (Dawe, 2000). Diazotrophs can be found in many rice growing areas, either free-living or associated with the legume sesbania or the aquatic water fern Azolla, in another naturally occurring situation, nitrogen-fixing bacteria of genus Rhizobium (known as rhizobia) are known to endophytically associate with rice plants, colonizing their root tissues without the formation of true root nodules (Britto & Kronzucker, 2004). Nitrogen feeding due to considerable effect on the growing parameters and physiological properties of rice is very important as by selecting nitrogen biologic and chemical fertilizer rate suitable could reach to balanced composition of growing index and supplied yield improvement (Azarpour et al, 2011). The nitrogen fixed by these bacteria is directly or indirectly available to the crop, with free-living bacterae annually, under greenhouse conditions, the amount of biologically fixed nitrogen taken up by rice can be as much 80% of its nitrogen uptake, and is strongly cultivar-dependent (Britto & Kronzucker, 2004). BNF may give rise to a yield penalty because the energy requirement of nitrogen fixation may necessitate translocation of same carbon away from the grain, this concern may be mitigated to some extent because rice is low in protein, this implied that much lower rates of nitrogen fixation will be required (relative to legumes), with correspondingly less drain on the plants photosythes (Dawe, 2000). Large amounts of nitrogen derived from biological fixation have been shown to be present in rice plant (Muralib et al, 2012). Acetylene reduction assay, N studies and N balance studies showed that the contribution of N2 fixation associated with root is about 20% of the N of rice, identification of rice genotypes capable of stimulating associative N2 fixation is an important goal for rice agriculture. Heterotrophic bacterial BNF is 7 kg N ha-1, ranging ranging 11-16 kg N ha-1 which contributes 16-21 of total rice N requirement (Shrestha & Maskey, 2005). The inescapable conclusion from the above is that rice productivity is severely limited by available N, the highest sustainable yields with available BNF could reach 3-4 T/ha in the rainfed lowlands and 4-5 T/ha in irrigated rice, yield beyond those levels will not be attainable without chemical N fertilizer or innovative forms BNF (Kush & Bennett, 1992). Effect biofertilizer on rice growth and development and concluded that inoculating rice transplants with azospirillum increases leaf area, plant height, panicle length and the number of grains/panicle (Shokouri et al, 2012). The biological nitrogen fixation (BNF) associated with rice roots under SRI practices and have identified the role of Azospirillium as a source for meeting plant nitrogen needs (Randriamibarisoa, 2002). Azotobacter act as one of the important biofertilizer for rice and other cereals, it can apply by seed dipping and seedling root dipping methods, Rhizobium is able to induce the shoot and root growth in rice plant, Azospirillum population enhances the utilization of P and NH4 compounds in rice plants, Azolla is able to reclaim soils reducing the weed infestations in rice crops and it was also used in waste water treatment and heavy metal degradation process (kumar & Rao, 2012).

References


15. K.R. Hakeem, R.Chandra, P.Ahmad, A.Ahmad, M.Iqbal, “Physiological and molecular analysis of applied nitrogen in rice genotypes” Rice ScienceDirect,19(1),2012.


